Introduction
- B-scan ultrasound has been used to measure the diameter of the optic nerve sheath in the setting of elevated intracranial hypertension.[1,2]
- No previous studies have compared B-scan ultrasound measurement of optic nerve sheath diameter in pediatric patients with measurements obtained by MRI in the same patient on the same day.
- The purpose of this study is to determine the correlation of B-scan ultrasound optic nerve sheath diameter (ONSD) measurements with high resolution orbital MRI in pediatric patients.

Methods
- Prospective study was approved by IRB and enrolled pediatric patients who were already scheduled to have an MRI of the brain.
- A supine B-scan completed within 30 minutes of MRI (10-MHz Sonomed EZ Scan BS500 + Ophthalmic B-Scan).
- 3 measurements of the vertical ONSD on the B-scan image obtained at 3, 6, and 9 mm posterior to the papilla. (Fig.1)
- High resolution MRI oblique coronal T2 images were acquired perpendicular to the long axis of each optic nerve. (Fig.2)
- The radiologist performed similar blinded measurements of the ONSD on MRI.
- The means and standard deviations were calculated for each eye and location comparing B-scan to MRI measurements.
- A repeated measures crossover model with a compound symmetry correlation structure was used to test statistical hypotheses, fit separately for each eye.

Results
- 10 patients, ages 5 to 17, average age 11.5 years.
- 6 females and 4 males.
- 1 patient with history of leukemia, the MRI demonstrated mild dilatation of the optic nerve sheaths. A subsequent ophthalmic exam demonstrated normal vision, a normal appearing fundus and optic nerve. 9 patients had normal or stable MRI. None of the patients had elevated intracranial pressure.

<table>
<thead>
<tr>
<th>Eye</th>
<th>Point along optic nerve</th>
<th>Average B-scan ONSD (SD)</th>
<th>MRI ONSD (SD)</th>
<th>Mean of Differences (SD)</th>
<th>Repeated Measures Model P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>3 mm</td>
<td>4.48 (0.697)</td>
<td>5.61 (1.026)</td>
<td>1.13 (1.34)</td>
<td>0.0085</td>
</tr>
<tr>
<td></td>
<td>6 mm</td>
<td>5.70 (0.611)</td>
<td>4.42 (1.048)</td>
<td>-1.28 (1.34)</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td>9 mm</td>
<td>6.73 (0.855)</td>
<td>4.02 (0.719)</td>
<td>-2.71 (1.13)</td>
<td><0.0001</td>
</tr>
<tr>
<td>OS</td>
<td>3 mm</td>
<td>5.72 (0.592)</td>
<td>4.50 (0.744)</td>
<td>-1.22 (1.01)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>6 mm</td>
<td>6.64 (0.647)</td>
<td>4.25 (0.528)</td>
<td>-2.39 (0.94)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Figure 1: B-scan ultrasound of ONSD measurement at 3 mm posterior to the papilla

Figure 2: Oblique coronal T2 images were acquired perpendicular to the long axis of each optic nerve for vertical ONSD measurements.

Discussion
- There is new interest in comparing ONSD MRI imaging to ultrasound measurements.[14]
- The B-scan ultrasound is a sectoral ultrasound, with one crystal vibrating back and forth. This creates an image in a “fan-like” projection, with a wider signal of decreasing intensity, farther from the tip of the probe.
- Our concern, based on anatomical studies of cadavers, is that ONSD measurements become less accurate the farther away from the probe, because of a “shadowing effect” from the sectoral ultrasound.[2]
- The difference between the B-scan and the MRI measurements in this study becomes larger as the point moves away from the globe, and is statistically significant.

Conclusion
- When using sector ultrasound to image retro-orbital anatomy, especially ONSD, measurements beyond 3 mm posterior to the anterior papilla may not be accurate, and MRI may be more reliable in providing more anatomically accurate measurements of the optic nerve sheath diameter.

References

Funding was provided by the Ohio Lion’s Eye Research Foundation, grants #944713, #934714.